3GPP TSG SA WG3 (Security) Meeting #89
S3-17xxxx
27 November- 1 December 2017, Reno (US)
revision of S3-17xabc
Source:
Nokia
Title:
OAuth based service authorization framework for SBA
Document for:
Discussion
Agenda Item:
7.2.13
1
Decision/action requested

Accept OAuth as a candidate for SBA Service authorization framework
2
References

[1]
RFC 6749 - The OAuth 2.0 Authorization Framework
[2]
RFC 6750 - The OAuth 2.0 Authorization Framework: Bearer Token Usage
[3]
RFC 7519 - JSON Web Token (JWT)
[4]
RFC 7521 - Assertion Framework for OAuth 2.0 Client Authentication and Authorization Grants
[5]
RFC 7523 - JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
3
Rationale

In 5G SBA, NF Service is provided only to authorized NF Service consumers. Therefore, Service authorization procedure is required that checks whether the NF Service Consumer is permitted to access the requested NF service producer for consuming the NF Service.

Service authorization is based on the Service authorization information that is configured as one of the components in NF profile of the NF Service Producer. This information includes the NF type (s) and NF realms/origins allowed to consume NF Service(s) of NF Service Producer.
In this paper, we present a service authorization framework based on the OAuth 2.0 authorization framework (RFC 6749).
4
Detailed proposal

4.1
Introduction to OAuth
The OAuth 2.0 Authorization Framework (RFC 6749) is the industry-standard protocol for API authorization.
It is a protocol that’s typically used for delegated access where a resource owner (user) grants limited access to his resources on one site (protected Resource), to another site (Client), without having to expose his secret credentials (password etc.).
But OAuth is also widely popular in machine to machine scenarios where there is no user involved, and service interaction is between two independent services (aka Network functions).
In the context of Restful API access, OAuth 2.0 can be used for granting clients limited access to a protected web service or API. This is done by an authorisation server which issues the clients with access tokens.
4.1.1
OAuth 2.0 Roles and Grant types

The OAuth 2.0 framework defines the following roles:
· Resource owner (a.k.a. the User) - An entity capable of granting access to a protected resource. When the resource owner is a person, it is referred to as an end-user.

· Resource server (a.k.a. the API server) - The server hosting the protected resources, capable of accepting and responding to protected resource requests using access tokens. This is the API we want to access.
· Client - An application making protected resource requests on behalf of the resource owner and with its authorization.
· Authorisation server - The server issuing access tokens to the client after successfully authenticating the resource owner and obtaining authorization.

From RFC 6749

For example, an end-user (resource owner) can grant a printing service (client) access to her protected photos stored at a photo-sharing service (resource server), without sharing her username and password with the printing service. Instead, she authenticates directly with a server trusted by the photo-sharing service (authorization server), which issues the printing service delegation-specific credentials (access token).
Instead of using the resource owner's credentials to access protected resources, the client obtains an access token -- a string denoting a specific scope, lifetime, and other access attributes. Access tokens are issued to third-party clients by an authorization server with the approval of the resource owner. The client uses the access token to access the protected resources hosted by the resource server.

OAuth 2.0 supports several different grants – ways of retrieving an access token. Deciding which one to use depends mostly on the type of Client.
a. Authorization Code Grant – Used to access an API rom a regular web app based client.

b. Authorization Code using Proof Key for Code Exchange (PKCE) – used to access an API from a mobile app

c. Implicit Grant – used to access a API from a client-side app (javascript app running within a browser)

d. Resource Owner Password Grant – used by highly trusted applications to access an API. Used when there is a high degree of trust between the user and the client.

e. Client Credentials Grant – used to access an API from a Non-Interactive Client (service running on a machine). Used in machine-to-machine interfaces where the Client is also the Resource owner. Suitable for Server-to-server interfaces.
In 5G Service Based Architecture, NF service authorization is required to ensure that the NF Service Consumer is authorized to access the NF service provided by the NF Service Provider. The OAuth 2.0 Client Credentials Grant (bullet e above) type fits well for this purpose. When Client Credentials Grant type is used, the NF service Consumer is the Client (and the Resource owner) and the NF service Producer is the Resource server (API server).
4.1.2
OAuth 2.0 Client Credentials grant
Client credentials grant type is typically used when the client is acting on its own behalf i.e. the client is also the resource owner, or is requesting access to protected resources based on an authorization previously arranged with the authorization server.

Figure below is an illustration of the OAuth Client Credentials grant type.

[image: image1.emf]Client

Authorization

Server

API

(Resource

Server)

1

2

3

Figure 4.1.2-1 OAuth 2.0 Client Credentials grant
1. Before invoking the Restful HTTP based API on the Server, the Client authenticates with an Authorization Server by presenting its credentials consisting of its Client Id and Client Secret.
NOTE: The Client Id is issued by the Authorization server when the Client registers with the Authorization server (an out of band step).
2. The Authorization server validates the Client and returns an access token.

3. The Client can use the access token to call the API.
The key point here is - the Client authenticates with the authorization server and obtains authorization information (access token) in one step. This means that there is a need for the Client to be pre-populated with credentials that can be presented by it and verified by the authorization server in step 1.

4.1.3
Access token
In this section, we explore the concept of a OAuth 2.0 access token.

The Access Token is a credential that can be used by a client to access an API.The purpose of the access token is to inform the API that the bearer of this token has been authorized to access the API and perform specific actions (as specified by the scope that has been granted).
NOTE: The access token is usually used as a Bearer credential and transmitted in an HTTP Authorization header to the API. RFC 6750 explores the concept of a bearer access token in further detail.
The access token is typically of two types:

1. Opaque String (RFC 6750): has an associated scope and lifetime. The access token is of type bearer: whoever holds the token can make a HTTP request to the protected web API. The caveat is that access tokens must be kept secret always and only used over HTTPS – i.e. there is no inbuilt protection. Validation is done out of band by the Resource server through its interface with the Authorization server.

2. JSON Web Token (JWT – RFC 7519): JWT is an open standard that defines a compact and self-contained way for securely transmitting “information or claims” encoded as a JSON object between two parties. JWT’s are typically sent either integrity protected or encrypted (Unsecured JWTs are also allowed).
a. Signed JWT using JWS:

· JWTs can be signed by the issuer (Authorization server) either using a shared secret (with the HMAC algorithm) or with its private key (when using RSA). The JSON Web Signature (JWS - RFC 7515) standard is used to integrity protect JWTs. Signed JWT is usually referred to as a JWS object.
· Signed JWT (aka JWS) includes a digital signature (when RSA is used) or a HMAC value (when symmetric key is used).
· The integrity protection covers a) JWT Header (which includes information on the algorithm used) and b) the JSON Payload (which includes the claim or information).
· The receiver party (API server) can therefore trust the received information and independently verify the integrity of the information as it shares the secret with the issuer or has the public key of the issuer (in case of RSA).
b. Encrypted JWT using JWE:

· JWTs can also be encrypted with JSON Web Encryption (JWE - RFC 7516) if there are JSON claims in the access token that need to be concealed in storage and transit.
· JWE supports AEAD based crypto algorithms, therefore support the ability to provide both integrity and confidentiality services using a single algorithm.

· JWE may therefore be used as a single tool for both integrity protection and confidentiality of the message.

4.1.4
Integrity protecting JWT with JWS
In this section, we’ll breakdown the structure of the JWT access token.and explore how JWS is used to integrity protect a JWT based access token.
JWT consists of three parts, each separated by a dot:

· Header

· Payload

· Signature

JWT looks like this: Header.Payload.Signature
4.1.4.1
JWT Header

The header carries 2 parts:

· declaring the type, which is JWT

· the hashing algorithm to use (HMAC SHA256 in the example below)

Here's an example:

{

 "typ": "JWT",

 "alg": "HS256"

}

Now once this is base64encode, we have the first part of our JSON
eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9

4.1.4.2
JWT Payload

The payload will the JWT Claims. This is where we will put the information that we want to transmit and other information about our token.

There are multiple claims that we can provide. This includes registered claim names, public claim names, and private claim names.

Registered Names: These are IANA registered claims such as:

· iss: The issuer of the token

· sub: The subject of the token

· aud: The audience of the token

· exp: This will probably be the registered claim most often used

· nbf: Defines the time before which the JWT MUST NOT be accepted for processing

· iat: The time the JWT was issued. Can be used to determine the age of the JWT

· jti: Unique identifier for the JWT. Can be used to prevent the JWT from being replayed. This is helpful for a one time use token.
Public Claims: These are the claims that we create ourselves. Can be anything – like user name, ip address etc.

Private Claims: A producer and consumer may agree to use claim names that are private.
In the example below payload has two registered claims (iss, and exp) and two public claims (name, ip address)

{

 "iss": "3gpp.org",

 "exp": 1300819380,

 "name": "Firstname Last Name",

 "IP address": “10.10.10.10”

}

Now once this is base64encode, we have the second part of our JSON:

eyJpc3MiOiJzY290Y2guaW8iLCJleHAiOjEzM

4.1.4.3
JWT Signature

The third the JSON Web Token is the signature. This signature is made up of a hash of the following components:

· the header

· the payload

· secret

For example, with HMAC SHA 256, it is:

HMACSHA256(encodedString of the header and payload, 'secret');

This gives us the final part of our JWT.

03f329983b86f7d9a9f5fef85305880101d5e302afa

Signed JWT (aka JWS) is now a concatenation of the three parts:

eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJzY290Y2guaW8iLCJleHAiOjEzM. 03f329983b86f7d9a9f5fef85305880101d5e302afa
4.1.5
Using JWT with OAuth
Let’s look at how JWT works with the OAuth 2.0 Client Credentials flow.
In the procedure described in section 4.1.2:

Step 1: Same as in 4.1.2-1

Step 2: A signed or encrypted JSON Web Token is returned by the Authorization server as the access token. The claims in the JWT contain information required for the API server to identify the client, scope of access, duration etc.
Step 3: When the Client calls the API, it sends this protected JWT in the API request, typically in the Authorization header using the Bearer schema. The content of the header would look like this, for example:
Authorization: Bearer <token>

Since JWTs are self contained and secure, they can be passed on easily without any worry of being tampered. All the required information is there and the API Server can validate the access token it on its own, thus avoiding the need for an additional call to the authorization server or a look up in the database.

4.2 Service authorization based on OAuth & JSON Web Token
In the example below, NRF is assumed to play the role of OAuth Authorization Server. As an example, integrity check is performed based on public key/private key pair using RSA.

[image: image2.emf]NF Service

Consumer

Authorization Server

(NRF)

1. Access Token Request

(client_id, client_secret

grant_type=client_credentials)

2. OK

(access_token, expires_in..)

Authenticate client and

generates signed JWT

based access token

NF Service

Producer

3. NF Service request

(access_token)

Verify access token.

If successful, executes the

requested service

4. NF Service response

0. NF Service Consumer registers with the NRF.

Obtains a client_id

Figure 4.2-1 Service authorization in SBA based on OAuth authorization framework

Pre-requisite:

a. The NF Service registers with the NRF (Authorization Server) and obtains a client_id.

b. The NRF’s public key is shared with the NF Service producer (needed for digital signature).

Step 1. NF Service consumer issues an Access Token Request (client_id, client_secret, grant_type = client_credentials, scope, Requesting NF Type, NF Service Name…) to NRF.

Step 2: The NRF authenticates the client based on the provided client credentials.

If the client is successfully authenticated, it checks the stored NF profile information to determine whether the access can be permitted. If the service can be provided, NRF generates a JWT based access token with appropriate claims included.

It further signs this token using its private key. The signed JWT is included in Authorization Result (access_token).
Step 3. The NF Service consumer calls the API. It includes the access_token in the API Request.

Step 4. The NF Service producer verifies the token as follows:

· Check that the JWT is well formed.

· Check the signature.

· Validate the standard claims (specifically the exp, iss and aud claims)

· Check the Client permissions (scopes)

If all these checks were successful, the NF Service producer can be assured that:

· The token was issued by NRF.

· The token was issued to the correct NF Service consumer (identifier match)

The NF Service producer can now execute the requested service.

4.3 Conclusion
OAuth 2.0 authorization framework based on Client Credentials grant type is suitable for SBA where service access is between two Network Functions. The NF Service Consumer plays the role of both OAuth Client (and Resource owner), and NF Server Producer plays the role of a Resource server.

When secured JWT is used as the format for the access token, it makes it very efficient as NF Service Producer can independently verify the claims in the access token without having to check a local database or ask Authorization server.

We propose “OAuth 2.0 authorization framework based on a secure JWT based access token” as a candidate for Service Authorization in SBA.
A companion pCR S3-173226 provides introductory text to TS 33.501 section

_1572432980.vsd
Client

Authorization Server

API
(Resource Server)

1

2

3

_1572449948.vsd
4. NF Service response

NF Service Consumer

Authorization Server
(NRF)

3. NF Service request
(access_token)

Verify access token.
If successful, executes the requested service

0. NF Service Consumer registers with the NRF.
Obtains a client_id

1. Access Token Request
(client_id, client_secret
grant_type=client_credentials)

2. OK
(access_token, expires_in..)

Authenticate client and generates signed JWT based access token

NF Service Producer

